Errata

Re: THE EFFECT OF AXIAL LIGAND FIELD ON GROUND STATE PROPERTIES OF COMPLEXES WITH ORBITALLY DEGENERATE GROUND TERMS

by G. A. WEBB, Coordin. Chem. Rev., 4 (1969) 107-145

p. 109, equation (3) should read, $V = V_0 + V_T$

p. 110, sentence beginning on line 4 should read,

"In contrast the two parameter axial field model⁸ considers the more general case with b' being different from zero, ..."

p. 111, line 13 should read,

"...angle subtended at the metal ion by a vertex and the major symmetry axis¹⁴."

Equation (7) should read,

$$Ds = \frac{2}{7} \operatorname{Zer}^{2} \left(\frac{1}{b^{3}} - \frac{1}{a^{3}} \right)$$

Equation (8) should read,

$$Ds = \frac{3}{7} \frac{Ze\bar{r}^2}{a^3} (1 - 3\cos^2 \alpha)$$

The sentences accompanying equation (8) should read,

"For an octahedron deformed along a trigonal axis (eq. (8)) so that Ds is negative for a compression and positive for an extension along the trigonal axis. Hence for an octahedron distorted by a tetragonal deformation a compression produces a positive value of Δ for T_2 terms and a negative value for T_1 terms, the converse being true in the case of a compression along a trigonal axis."

Equation (9) should read,

$$Ds = \frac{2}{7} \frac{Zer^2}{a^3} (1 - 3\cos^2 \alpha)$$

The sentence accompanying equation (9) should read,

"In the case of a tetrahedron with a tetragonal distortion along the S_4 axis

Coordin. Chem. Rev., 4 (1969) 385-387

386 Errata

(eq. (9)) which implies that Ds is negative for a compression of the tetrahedron and positive for an elongation along the tetragonal axis."

The sentence beginning 8 lines from the bottom of p. 111 should read,

"In general the sign of Δ produced by distortion of a tetrahedron is the same as that produced by a similar distortion of an octahedron."

p. 113, equation (14) should read,

$$\mathbf{X}_{\alpha \mathbf{M}} = \frac{N \sum_{i} \left[\frac{\left(E_{i\alpha}^{\mathbf{I}}\right)^{2}}{kT} - 2E_{i\alpha}^{\mathbf{II}} \right] e \frac{-E_{i\alpha}^{\mathbf{0}}}{kT}}{\sum_{i} e \frac{-E_{i\alpha}^{\mathbf{0}}}{kT}}$$

line 14 should read,

"the g tensor to derive expressions for the magnetic moment, see page 121."

p. 115, equation (20) should read,

$$S_1 = X_{\perp}$$

$$S_2 = X_{\parallel} \cos^2 \alpha + X_{\perp} \sin^2 \alpha$$

$$S_3 = X_{\parallel} \sin^2 \alpha + X_{\perp} \cos^2 \alpha$$

followed by, "Therefore $X_{\perp} = S_1$ "

p. 116, penultimate line should read,

"— first excited level is split into 2 degenerate sets of states by $\Delta E_Q = e^2 qQ/2$."

p. 119, line 5 should read,

"pair by definition, and from (30) it follows that qval is positive. Now for the"

p. 121, equation (44) should read,

$$g_{\perp} = 2 - \frac{2\lambda}{\Delta} - \frac{4\lambda}{10 \; \mathrm{Dq}}$$

equation (45) should read,

$$g_{\parallel} = 2\left(1 - \frac{4\lambda}{\Delta_{i}}\right)$$

and
$$g_L = 2\left(1 - \frac{\lambda}{\Delta_2}\right)$$

equation (46) and following sentence should read,

$$g_{\parallel}=2$$

$$g_{\perp}=2\left(1-\frac{3\lambda}{\Delta_3}\right)$$

Where Δ_1 = the separation between the d_{xy} and $d_{x^2-y^2}$ orbitals, Δ_2 the separation between $d_{x^2-y^2}$ and the pair d_{xz} , d_{yz} and Δ_3 is the separation between the d_{z^2} and the d_{xz} , d_{yz} pair of orbitals."

p. 125, equation (53) should read,

$$P^{2} = \frac{\sum_{n=1}^{9} \left(A_{n} + \frac{B_{n}}{y} \right) e^{a_{n}y}}{\sum_{n=1}^{6} 2e^{a_{n}y} + \sum_{n=7}^{9} e^{a_{n}y}}$$

equation (54) should read,

$$\Delta E_{Q} = \frac{2}{7} e^{2} Q(1 - R) \langle r^{-3} \rangle \frac{\sum_{n=1}^{9} C_{n} e^{a_{n}y}}{\sum_{n=1}^{9} e^{a_{n}y}}$$

p. 133, Table 3; the second complex should be,

p. 137, third line from the bottom should read,

"data on the corresponding Mn^{III} complex (see page 134). The apparent dependence"

p. 139, line 18 should read,

"The data for the alum Cs₂(SO₄)Ti(SO₄)12H₂O have been derived from a number"